Number of results to display per page
Search Results
302. Methane emissions from oil and gas platforms in the North Sea.
- Author(s):
- Riddick, Stuart; Mauzerall, Denise
- Abstract:
- Since 1850 the concentration of atmospheric methane (CH4), a potent greenhouse gas, has more than doubled. Recent studies suggest that emission inventories may be missing sources and underestimating emissions. To investigate whether offshore oil and gas platforms leak CH4 during normal operation, we measured CH4 mole fractions around eight oil and gas production platforms in the North Sea which were neither flaring gas nor off-loading oil. We use the measurements from summer 2017, along with meteorological data, in a Gaussian plume model to estimate CH4 emissions from each platform. We find CH4 mole fractions of between 11 and 370 ppb above background concentrations downwind of the platforms measured, corresponding to a median CH4 emission of 6.8 g CH4 s-1 for each platform, with a range of 2.9 to 22.3 g CH4 s-1. When matched to production records, during our measurements individual platforms lost between 0.04% and 1.4% of gas produced with a median loss of 0.23%. When the measured platforms are considered collectively, (i.e. the sum of platforms’ emission fluxes weighted by the sum of the platforms’ production), we estimate the CH4 loss to be 0.19% of gas production. These estimates are substantially higher than the emissions most recently reported to the National Atmospheric Emission Inventory (NAEI) for total CH4 loss from United Kingdom platforms in the North Sea. The NAEI reports CH4 losses from the offshore oil and gas platforms we measured to be 0.13% of gas production, with most of their emissions coming from gas flaring and offshore oil loading, neither of which were taking place at the time of our measurements. All oil and gas platforms we observed were found to leak CH4 during normal operation and much of this leakage has not been included in UK emission inventories. Further research is required to accurately determine total CH4 leakage from all offshore oil and gas operations and to properly include the leakage in national and international emission inventories.
- Type:
- Dataset
- Issue Date:
- February 2019
303. Data for 'Environmental Benefits and Household Costs of Clean Heating Options in Northern China'
- Author(s):
- Zhou, Mi; Peng, Liqun; Zhang, Lin; Mauzerall, Denise L.
- Abstract:
- This dataset is created for the paper titled 'Environmental Benefits and Household Costs of Clean Heating Options in Northern China' and published on Nature Sustainability. Based on a 2015 regional anthropogenic emission inventory (base case), we propose seven counterfactual scenarios in which all 2015 residential solid fuel heating in northern China switches to one of the following non-district heating options: clean coal with improved stoves (CCIS), natural gas heaters (NGH), resistance heaters (RH), or air-to-air heat pumps (AAHP). This dataset provides the following gridded information for the base case and each clean heating scenario: (1) annual residential heating emissions for PM2.5/NOx/SO2; (2) monthly mean surface PM2.5 concentrations from the WRF-Chem model; (3) annual PM2.5-related premature deaths calculated by the GEMM model; (4) 2015 population in China; (5) mask for provinces in China; (6) longitude and latitude of each grid center.
- Type:
- Dataset
- Issue Date:
- 22 December 2021
304. Compact steady-state tokamak performance dependence on magnet and core physics limits
- Author(s):
- Menard, J.E.
- Abstract:
- Compact tokamak fusion reactors utilizing advanced high-temperature superconducting magnets for the toroidal field coils have received considerable recent attention due to the promise of more compact devices and more economical fusion energy development. Facilities with combined Fusion Nuclear Science (FNS) and Pilot Plant missions to provide both the nuclear environment needed to develop fusion materials and components while also potentially achieving sufficient fusion performance to generate modest net electrical power are considered. The performance of the tokamak fusion system is assessed using a range of core physics and toroidal field magnet performance constraints to better understand which parameters most strongly influence the achievable fusion performance.
- Type:
- Dataset
- Issue Date:
- December 2018
305. Dataset for 'Auditory Activity is Diverse and Widespread Throughout the Central Brain of Drosophila'
- Author(s):
- Pacheco, Diego A; Thiberge, Stephan; Pnevmatikakis, Eftychios; Murthy, Mala
- Abstract:
- Sensory pathways are typically studied starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analysis of activity towards the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration, to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals, and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of spontaneous movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
- Type:
- Dataset
- Issue Date:
- October 2020
306. Understanding the dynamics and energetics of magnetic reconnection in a laboratory plasma: Review of recent progress on selected fronts
- Author(s):
- Yamada, M.; Yoo, J.; Myers, C. E.
- Abstract:
- Magnetic reconnection is a fundamental process at work in laboratory, space and astrophysical plasmas, in which magnetic field lines change their topology and convert magnetic energy to plasma particles by acceleration and heating. One of the most important problems in reconnection research has been to understand why reconnection occurs so much faster than predicted by MHD theory. Following the recent pedagogical review of this subject [M. Yamada, R. Kulsrud, and H. Ji, Rev. Mod. Phys. {\bf 82}, 603 (2010)], this paper presents a review of more recent discoveries and findings in the research of fast magnetic reconnection in laboratory, space, and astrophysical plasmas. In spite of the huge difference in physical scales, we find remarkable commonality between the characteristics of the magnetic reconnection in laboratory and space plasmas. In this paper, we will focus especially on the energy flow, a key feature of the reconnection process. In particular the experimental results on the energy conversion and partitioning in a laboratory reconnection layer [M. Yamada {\it et al.}, Nat. Commu. {\bf 5}, 4474 (2014)] are discussed and compared with quantitative estimates based on two-fluid analysis. In the Magnetic Reconnection Experiment (MRX), we find that energy deposition to electrons is localized near the X-point and is mostly from the electric field component perpendicular to the magnetic field. The mechanisms of ion acceleration and heating are also identified and a systematic and quantitative study on the inventory of converted energy within a reconnection layer with a well-defined but variable boundary. The measured energy partition in a reconnection region of similar effective size ($L \approx$ 3 ion skin depths) of the Earth's magneto-tail [J. Eastwood {\it et al.}, Phys. Rev. Lett. {\bf 110}, 225001 (2013)] is notably consistent with our laboratory results. Finally, to study the global aspects of magnetic reconnection, we have carried out a laboratory experiment on the stability criteria for solar flare eruptions, including {\textquotedblleft}storage and release{\textquotedblright} mechanisms of magnetic energy. We show that toroidal magnetic flux generated by magnetic relaxation (reconnection) processes generates a new stabilizing force which prevents plasma eruption. This result has lead us to discovery of a new stabilizing force for solar flares [C. E. Myers {\it et al.}, Nature {\bf 528}, 526 (2015)]
- Type:
- Dataset
- Issue Date:
- May 2016
307. Blob-hole correlation model for edge turbulence and comparisons with NSTX GPI data
- Author(s):
- Myra, J.R.; Zweben, S.J.; Russell, D.A.
- Abstract:
- Gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlation patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracing of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Other properties of the experimentally observed extrema are discussed.
- Type:
- Dataset
- Issue Date:
- July 2018
308. Theory based scaling of edge turbulence and implications for the scrape-off layer width
- Author(s):
- Myra, J.R.; Russell, D.A.; Zweben, S.J.
- Abstract:
- Turbulence and plasma parameter data from the National Spherical Torus Experiment NSTX [M. Ono, S.M. Kaye, Y.-K.M. Peng, G. Barnes et al., Nucl. Fusion 40, 557 (2000)] is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database [S.J. Zweben, W.M. Davis, S.M. Kaye, J.R. Myra et al., Nucl. Fusion 55, 093035 (2015)]. These are compared with theoretical estimates for drift and interchange rates, profile modification saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and high H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is in fact similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the important of turbulence in setting the scrape-off layer heat flux width lambda_q and its scaling. An explicit proportionality of the width lambda_q to safety factor and major radius (qR) is obtained under these conditions. Quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining lambda_q in NSTX, at least for high plasma current discharges.
- Type:
- Dataset
- Issue Date:
- November 2016
309. Two-dimensional turbulence cross-correlation functions in the edge of NSTX
- Author(s):
- Zweben, S.J.; Stotler, D.P.; Scotti, F.; Myra, J.R.
- Abstract:
- The 2-D radial vs. poloidal cross-correlation functions of edge plasma turbulence were measured near the outer midplane using the gas puff imaging (GPI) diagnostic on NSTX. These correlation functions were evaluated at radii r= 0 cm, ±3 cm, and ±6 cm from the separatrix and poloidal locations p=0 cm and ±7.5 cm from the GPI poloidal center line for 20 different shots. The ellipticity ε and tilt angle φ of the positive cross- correlation regions, and the minimum negative cross-correlation “cmin” and total negative over positive values “neg/pos” were evaluated for each of these cases. The average results over this data set were ε=2.2±0.9, φ=87±34o (i.e. poloidally oriented), cmin= -0.30±0.15, and neg/pos=0.25±0.24. Thus there was significant variation in these correlation results within this database, with dependences on the location within the image, the magnetic geometry, and the plasma parameters. Possible causes for this variation are discussed, including the misalignment of the GPI view with the local B field line, the magnetic shear of field lines in the edge, the poloidal flow shear of the turbulence, blob-hole correlations, and the neutral density ‘shadowing’ effect in GPI.
- Type:
- Dataset
- Issue Date:
- September 2017
310. Comment on ‘Numerical modeling of tokamak breakdown phase driven by pure Ohmic heating under ideal conditions’
- Author(s):
- Yoo, Min-Gu; Na, Yong-Su
- Abstract:
- In this comment, we point out possible critical numerical flaws of recent particle simulation studies (Jiang et al 2016 Nucl. Fusion 56 126017, Peng et al 2018 Nucl. Fusion 58 026007) on the electrical gas breakdown in a simple one-dimensional periodic slab geometry. We show that their observations on the effects of the ambipolar electric fields during the breakdown, such as the sudden reversal of the ion flow direction, could not be real physical phenomena but resulting from numerical artifacts violating the momentum conservation law. We show that an incomplete implementation of the direct-implicit scheme can cause the artificial electric fields and plasma transports resulting in fallacies in simulation results. We also discuss that their simple plasma model without considering poloidal magnetic fields seriously mislead the physical mechanism of the electrical gas breakdown because it cannot reflect important dominant plasma dynamics in the poloidal plane (Yoo et al 2018 Nat. Commun. 9 3523).
- Type:
- Dataset
- Issue Date:
- June 2019