Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
O'Neill, Eric; Lark, Tyler; Xie, Yanhua; Basso, Bruno
Abstract:
Collection of the underlying spatially explicit data for Available Land for Cellulosic Biofuel Production: A Supply Chain Centered Comparison. Includes raw biomass yield data and soil carbon sequestration potential data for three types of marginal land for the USA midwest at the field level including field areas. Collection also includes raw land rasters for the three types of marginal land, model parameters for the MILP model used in the study, and results used to generate the figures in the paper.
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), remains a major medical problem. HBV has a high propensity for progressing to chronicity and can result in severe liver disease, including fibrosis, cirrhosis and hepatocellular carcinoma. CHB patients frequently present with viral coinfection, including HIV and hepatitis delta virus. About 10% of chronic HIV carriers are also persistently infected with HBV which can result in more exacerbated liver disease. Mechanistic studies of HBV-induced immune responses and pathogenesis, which could be significantly influenced by HIV infection, have been hampered by the scarcity of immunocompetent animal models. Here, we demonstrate that humanized mice dually engrafted with components of a human immune system and a human liver supported HBV infection, which was partially controlled by human immune cells, as evidenced by lower levels of serum viremia and HBV replication intermediates in the liver. HBV infection resulted in priming and expansion of human HLA-restricted CD8+ T cells, which acquired an activated phenotype. Notably, our dually humanized mice support persistent coinfections with HBV and HIV which opens opportunities for analyzing immune dysregulation during HBV and HIV coinfection and preclinical testing of novel immunotherapeutics.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments, and previously published observation-based datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.