Number of results to display per page
Search Results
82. Initial transport and turbulence analysis and gyrokinetic simulation validation in NSTX-U L-mode plasmas
- Author(s):
- Guttenfelder, W.; Kaye, S.M.; Kreite, D.M.; Bell, R.E.; Diallo, A.; LeBlanc, B.P.; McKee, G.R.; Podesta, M.; Sabbagh, S.A.; Smith, D.R.
- Abstract:
- Transport analysis, ion-scale turbulence measurements, and initial linear and nonlinear gyrokinetic simulations are reported for a transport validation study based on low aspect ratio NSTX-U L-mode discharges. The relatively long, stationary L-modes enabled by the upgraded centerstack provide a more ideal target for transport validation studies that were not available during NSTX operation. Transport analysis shows that anomalous electron transport dominates energy loss while ion thermal transport is well described by neoclassical theory. Linear gyrokinetic GYRO analysis predicts that ion temperature gradient (ITG) modes are unstable around normalized radii $\rho$=0.6-0.8, although $E\timesB$ shearing rates are larger than the linear growth rates over much of that region. Deeper in the core ($\rho$=0.4-0.6), electromagnetic microtearing modes (MTM) are unstable as a consequence of the relatively high beta and collisionality in these particular discharges. Consistent with the linear analysis, local, nonlinear ion-scale GYRO simulations predict strong ITG transport at $\rho$=0.76, whereas electromagnetic MTM transport is important at $\rho$=0.47. The prediction of ion-scale turbulence is consistent with 2D beam emission spectroscopy (BES) that measures the presence of broadband ion-scale fluctuations. Interestingly, the BES measurements also indicate the presence of bi-modal poloidal phase velocity propagation that could be indicative of two different turbulence types. However, in the region between ($\rho$=0.56, 0.66), ion-scale simulations are strongly suppressed by the locally large $E\timesB$ shear. Instead, electron temperature gradient (ETG) turbulence simulations predict substantial transport, illustrating electron-scale contributions can be important in low aspect ratio L-modes, similar to recent analysis at conventional aspect ratio. However, agreement within experimental uncertainties has not been demonstrated, which requires additional simulations to test parametric sensitivities. The potential need to include profile-variation effects (due to the relatively large value of $\rho_*$=$\rho_i$/a at low aspect ratio), including electromagnetic and possibly multi-scale effects, is also discussed.
- Type:
- Dataset
- Issue Date:
- March 2019
83. The Role of Recti ed Currents in Far-Field RF Sheaths and in SOL Losses of HHFW Power on NSTX
- Author(s):
- Perkins, R.J.; Hosea, J.C.; Jaworski, M.A.; Bell, R.E.; Bertelli, N.; Kramer, G.J.; Roquemore, L.; Taylor, G.; Wilson, J.R.
- Abstract:
- Radio-frequency (RF) rectification is an important sheath phenomenon for wave heating of plasma in fusion devices and is proposed to be the mechanism responsible for converting highharmonic fast-wave (HHFW) power in the National Spherical Torus eXperiment (NSTX) into a heat ux to the divertor. RF rectification has two aspects: current rectification and voltage recti- fication, and, while the latter is emphasized in many application, we demonstrate the importance of current rectification in analysis of the NSTX divertor during HHFW heating. When rectified currents are accounted for in first-principle models for the heat ux to the tiles, we predict a sizeable enhancement for the heat ux in the presence of an RF field: for one case studied, the predicted heat ux increases from 0:103 MW=m2 to 0:209 MW=m2. We also demonstrate how this rectification scales with injected HHFW power by tracking probe characteristics during a HHFW power ramp; the rectified current may be clamped at a certain level. This work is important for minimizing SOL losses of HHFW power in NSTX-U but may also have implications for near-field studies of ICRF antennae: ignoring rectified current may lead to underestimated heat uxes and overestimated rectified voltages.
- Type:
- Dataset
- Issue Date:
- May 2017
84. Inversion technique to obtain local ion temperature profiles for an axisymmetric plasma with toroidal and radial velocities
- Author(s):
- Bell, Ronald E.
- Abstract:
- A matrix inversion technique is derived to calculate local ion temperature from line-integrated measurements of an extended emission source in an axisymmetric plasma which exactly corrects for both toroidal velocity and radial velocity components. Local emissivity and toroidal velocity can be directly recovered from line-integrated spectroscopic measurements, but an independent measurement of the radial velocity is necessary to complete the temperature inversion. The extension of this technique to handle the radial velocity is relevant for magnetic reconnection and merging compression devices where temperature inversion from spectroscopic measurements is desired. A simulation demonstrates the effects of radial velocity on the determination of ion temperature.
- Type:
- Dataset
- Issue Date:
- February 2021
85. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique
- Author(s):
- Crocker, N.A.; Kubota, S.; Peebles, W.A.; Rhodes, T.L.; Fredrickson, E.D.; Belova, E.; Diallo, A.; LeBlanc, B.P.; Sabbagh, S.A.
- Abstract:
- Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2–4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).
- Type:
- Dataset
- Issue Date:
- November 2017
86. Analytic stability boundaries for compressional and global Alfven eigenmodes driven by fast ions. II. Interaction via Landau resonance.
- Author(s):
- Lestz, J.B.; Gorelenkov, N.N.; Belova, E.V.; Tang, S.X.; Crocker, N.A.
- Abstract:
- Conditions for net fast ion drive are derived for beam-driven, co-propagating, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes driven by the Landau resonance with super-Alfvenic fast ions. Approximations applicable to realistic neutral beam distributions and mode characteristics observed in spherical tokamaks enable the derivation of marginal stability conditions for these modes. Such conditions successfully reproduce the stability boundaries found from numerical integration of the exact expression for local fast ion drive/damping. Coupling between the CAE and GAE branches of the dispersion due to finite \omega/\omega_{ci} and k_\parallel/k_\perp is retained and found to be responsible for the existence of the GAE instability via this resonance. Encouraging agreement is demonstrated between the approximate stability criterion, simulation results, and a database of NSTX observations of co-CAEs.
- Type:
- Dataset
- Issue Date:
- January 2020
87. Energetic-particle-modified global Alfven eigenmodes
- Author(s):
- Lestz, J.B.; Belova, E.V.; Gorelenkov, N.N.
- Abstract:
- Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfven eigenmodes (GAE) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function -- the normalized injection velocity v_0/v_A and central pitch -- are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v_0/v_A. This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in mode structure could indicate the existence of a new energetic particle mode, referred to here as an energetic-particle-modified GAE (EP-GAE). Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.
- Type:
- Dataset
- Issue Date:
- December 2017
88. Hybrid simulations of sub-cyclotron compressional and global Alfven Eigenmode stability in spherical tokamaks
- Author(s):
- Lestz, J.B.; Belova, E.V.; Gorelenkov, N.N
- Abstract:
- A comprehensive numerical study has been conducted in order to investigate the stability of beam-driven, sub-cyclotron frequency compressional (CAE) and global (GAE) Alfven Eigenmodes in low aspect ratio plasmas for a wide range of beam parameters. The presence of CAEs and GAEs has previously been linked to anomalous electron temperature profile flattening at high beam power in NSTX experiments, prompting further examination of the conditions for their excitation. Linear simulations are performed with the hybrid MHD-kinetic initial value code HYM in order to capture the general Doppler-shifted cyclotron resonance that drives the modes. Three distinct types of modes are found in simulations -- co-CAEs, cntr-GAEs, and co-GAEs -- with differing spectral and stability properties. The simulations reveal that unstable GAEs are more ubiquitous than unstable CAEs, consistent with experimental observations, as they are excited at lower beam energies and generally have larger growth rates. Local analytic theory is used to explain key features of the simulation results, including the preferential excitation of different modes based on beam injection geometry and the growth rate dependence on the beam injection velocity, critical velocity, and degree of velocity space anisotropy. The background damping rate is inferred from simulations and estimated analytically for relevant sources not present in the simulation model, indicating that co-CAEs are closer to marginal stability than modes driven by the cyclotron resonances.
- Type:
- Dataset
- Issue Date:
- March 2021
89. Nonlinear simulations of beam-driven Compressional Alfvén Eigenmodes in NSTX
- Author(s):
- Belova, E.V.; Gorelenkov, N.N.; Crocker, N.A.; Lestz, J.B.; Fredrickson, E.D.; Tang, S.; Tritz, K.
- Abstract:
- Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfven eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n=4-9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfven wave (KAW) that occurs on the high-field side at the Alfven resonance location. High-frequency Alfven eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam-driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.
- Type:
- Dataset
- Issue Date:
- April 2017
90. Data for "Ammonia Dry Deposition in an Alpine Ecosystem Traced to Agricultural Emission Hotpots"
- Author(s):
- Pan, Da; Benedict, Katherine; Golston, Levi; Wang, Rui; Collett, Jeffrey Jr; Tao, Lei; Sun, Kang; Guo, Xuehui; Ham, Jay; Prenni, Anthony; Schichtel, Bret; Mikoviny, Tomas; Müller, Markus; Wisthaler, Armin; Zondlo, Mark
- Abstract:
- Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m-2 s-1) versus only the urban area (1.0 ng m-2 s-1) and both urban and agricultural areas (2.7 ng m-2 s-1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 depositions in these regions.
- Type:
- Dataset
- Issue Date:
- 2021