To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor

Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
Issue date: April 2022
Cite as:
Schwartz, Jacob A., Nelson, A. O., & Kolemen, Egemen. (2022). To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor [Data set]. Princeton Plasma Physics Laboratory, Princeton University.
@electronic{schwartz_jacob_a_2022,
  author      = {Schwartz, Jacob A. and
                Nelson, A. O. and
                Kolemen, Egemen},
  title       = {{To dee or not to dee: costs and benefits
                 of altering the triangularity of a stea
                dy-state DEMO-like reactor}},
  publisher   = {{Princeton Plasma Physics Laboratory, Pri
                nceton University}},
  year        = 2022
}
Abstract:

Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.

Show More
# Filename Description Filesize
1 Figure_1.pdf 11 KB
2 Figure_1_data.csv 1.85 KB
3 Figure_1_generation.nb 18.1 KB
4 Figure_2.pdf 12 KB
5 Figure_2_data.csv 506 Bytes
6 Figure_3.pdf 16.4 KB
7 Figure_3_data.csv 1.19 KB
8 Figure_3_generation.nb 51.6 KB
9 Figure_4.pdf 31.1 KB
10 Figure_4_a.csv 8.42 KB
11 Figure_4_b.csv 8.51 KB
12 Figure_4_c.csv 8.45 KB
13 Figure_5.pdf 34.1 KB
14 Figure_5_scan1.csv 1.81 KB
15 Figure_5_scan1b.csv 373 Bytes
16 Figure_5_scan2.csv 1.81 KB
17 Figure_5_scan3.csv 1.82 KB
18 Figure_5_scan4.csv 1.8 KB
19 Figure_6.pdf 15.5 KB
20 Figure_6_data.csv 825 Bytes
21 Figure_7.pdf 21.4 KB
22 Figure_7_data.csv 1.65 KB
23 Figure_8.pdf 23.2 KB
24 Figure_8_data.csv 2.3 KB
25 Figure_9.pdf 18.5 KB
26 Figure_9_x_values.csv 1001 Bytes
27 Figure_9_y_values.csv 1012 Bytes
28 Figure_10.pdf 48.9 KB
29 Figure_10_a_contour_r.csv 14.3 KB
30 Figure_10_a_contour_value.csv 21.2 KB
31 Figure_10_a_contour_z.csv 14.7 KB
32 Figure_10_a_lcfs.csv 607 Bytes
33 Figure_10_b_contour_r.csv 14.3 KB
34 Figure_10_b_contour_value.csv 21.3 KB
35 Figure_10_b_contour_z.csv 14.6 KB
36 Figure_10_b_lcfs.csv 609 Bytes
37 Figure_11.pdf 16 KB
38 Figure_11_data.csv 369 Bytes
39 README.txt 2.86 KB
40 beta_stability_multipliers.py 465 Bytes
41 delta_0.0_lcoe_199.2.sql 1.15 MB
42 delta_0.0_lcoe_249.0.sql 1.15 MB
43 delta_0.0_lcoe_250.0.sql 1.15 MB
44 delta_0.0_lcoe_332.0.sql 1.15 MB
45 delta_0.0_lcoe_398.4.sql 1.15 MB
46 delta_0.0_lcoe_498.0.sql 1.15 MB
47 delta_0.1_lcoe_199.2.sql 1.15 MB
48 delta_0.1_lcoe_249.0.sql 1.15 MB
49 delta_0.1_lcoe_250.0.sql 1.15 MB
50 delta_0.1_lcoe_332.0.sql 1.15 MB
51 delta_0.1_lcoe_398.4.sql 1.15 MB
52 delta_0.1_lcoe_498.0.sql 1.15 MB
53 delta_0.2_lcoe_150.0.sql 1.15 MB
54 delta_0.2_lcoe_199.2.sql 1.15 MB
55 delta_0.2_lcoe_249.0.sql 1.15 MB
56 delta_0.2_lcoe_250.0.sql 1.15 MB
57 delta_0.2_lcoe_332.0.sql 1.15 MB
58 delta_0.2_lcoe_398.4.sql 1.15 MB
59 delta_0.2_lcoe_498.0.sql 1.15 MB
60 delta_0.3_lcoe_199.2.sql 1.15 MB
61 delta_0.3_lcoe_249.0.sql 1.15 MB
62 delta_0.3_lcoe_250.0.sql 1.15 MB
63 delta_0.3_lcoe_332.0.sql 1.15 MB
64 delta_0.3_lcoe_398.4.sql 1.15 MB
65 delta_0.3_lcoe_498.0.sql 1.15 MB
66 delta_0.4_lcoe_199.2.sql 1.15 MB
67 delta_0.4_lcoe_249.0.sql 1.15 MB
68 delta_0.4_lcoe_250.0.sql 1.15 MB
69 delta_0.4_lcoe_332.0.sql 1.15 MB
70 delta_0.4_lcoe_398.4.sql 1.15 MB
71 delta_0.4_lcoe_498.0.sql 1.15 MB
72 delta_0.5_lcoe_199.2.sql 1.15 MB
73 delta_0.5_lcoe_249.0.sql 1.15 MB
74 delta_0.5_lcoe_250.0.sql 1.15 MB
75 delta_0.5_lcoe_332.0.sql 1.15 MB
76 delta_0.5_lcoe_398.4.sql 1.15 MB
77 delta_0.5_lcoe_498.0.sql 1.15 MB
78 delta_0.6_lcoe_199.2.sql 1.15 MB
79 delta_0.6_lcoe_249.0.sql 1.15 MB
80 delta_0.6_lcoe_250.0.sql 1.15 MB
81 delta_0.6_lcoe_332.0.sql 1.15 MB
82 delta_0.6_lcoe_398.4.sql 1.15 MB
83 delta_0.6_lcoe_498.0.sql 1.15 MB
84 delta_-0.1_lcoe_199.2.sql 1.15 MB
85 delta_-0.1_lcoe_249.0.sql 1.15 MB
86 delta_-0.1_lcoe_250.0.sql 1.15 MB
87 delta_-0.1_lcoe_332.0.sql 1.15 MB
88 delta_-0.1_lcoe_398.4.sql 1.15 MB
89 delta_-0.1_lcoe_498.0.sql 1.15 MB
90 delta_-0.2_lcoe_199.2.sql 1.15 MB
91 delta_-0.2_lcoe_249.0.sql 1.15 MB
92 delta_-0.2_lcoe_250.0.sql 1.15 MB
93 delta_-0.2_lcoe_332.0.sql 1.15 MB
94 delta_-0.2_lcoe_398.4.sql 1.15 MB
95 delta_-0.2_lcoe_498.0.sql 1.15 MB
96 delta_-0.3_lcoe_199.2.sql 1.15 MB
97 delta_-0.3_lcoe_249.0.sql 1.15 MB
98 delta_-0.3_lcoe_250.0.sql 1.15 MB
99 delta_-0.3_lcoe_332.0.sql 1.15 MB
100 delta_-0.3_lcoe_398.4.sql 1.15 MB
101 delta_-0.3_lcoe_498.0.sql 1.15 MB
102 delta_-0.4_lcoe_199.2.sql 1.15 MB
103 delta_-0.4_lcoe_249.0.sql 1.15 MB
104 delta_-0.4_lcoe_250.0.sql 1.15 MB
105 delta_-0.4_lcoe_332.0.sql 1.15 MB
106 delta_-0.4_lcoe_398.4.sql 1.15 MB
107 delta_-0.4_lcoe_498.0.sql 1.15 MB
108 delta_-0.5_lcoe_199.2.sql 1.15 MB
109 delta_-0.5_lcoe_249.0.sql 1.15 MB
110 delta_-0.5_lcoe_250.0.sql 1.15 MB
111 delta_-0.5_lcoe_332.0.sql 1.15 MB
112 delta_-0.5_lcoe_398.4.sql 1.15 MB
113 delta_-0.5_lcoe_498.0.sql 1.15 MB
114 delta_-0.6_lcoe_150.0.sql 1.1 MB
115 delta_-0.6_lcoe_199.2.sql 1.15 MB
116 delta_-0.6_lcoe_249.0.sql 1.15 MB
117 delta_-0.6_lcoe_250.0.sql 1.15 MB
118 delta_-0.6_lcoe_332.0.sql 1.15 MB
119 delta_-0.6_lcoe_398.4.sql 1.15 MB
120 delta_-0.6_lcoe_498.0.sql 1.15 MB
121 Figure_9_analysis.py 8.9 KB
122 Figure_9_DEMO.yaml 8.49 KB
123 Figure_9_FAROES_script.py 6.01 KB
124 tokamak_model.py 15.3 KB