-
Description: Tertiary modes in electrostatic drift-wave turbulence are localized near extrema of the zonal velocity $U(x)$ with respect to the radial coordinate $x$. We argue that these modes can be described as quantum harmonic oscillators with complex frequencies, so their spectrum can be readily calculated. The corresponding growth rate $\gamma_{\rm TI}$ is derived within the modified Hasegawa--Wakatani model. We show that $\gamma_{\rm TI}$ equals the primary-instability growth rate plus a term that depends on the local $U''$; hence, the instability threshold is shifted compared to that in homogeneous turbulence. This provides a generic explanation of the well-known yet elusive Dimits shift, which we find explicitly in the Terry--Horton limit. Linearly unstable tertiary modes either saturate due to the evolution of the zonal density or generate radially propagating structures when the shear $|U'|$ is sufficiently weakened by viscosity. The Dimits regime ends when such structures are generated continuously.
Show More
Filename | Size |
---|