To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor

Schwartz, Jacob A. ; Nelson, A. O. ; Kolemen, Egemen
Issue date: 2022
Rights:
Creative Commons Attribution 4.0 International (CC BY)
Cite as:
Schwartz, Jacob A., Nelson, A. O., & Kolemen, Egemen. (2022). To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor [Data set]. Princeton Plasma Physics Laboratory, Princeton University. https://doi.org/10.11578/1888268
@electronic{schwartz_jacob_a_2022,
  author      = {Schwartz, Jacob A. and
                Nelson, A. O. and
                Kolemen, Egemen},
  title       = {{To dee or not to dee: costs and benefits
                 of altering the triangularity of a stea
                dy-state DEMO-like reactor}},
  publisher   = {{Princeton Plasma Physics Laboratory, Pri
                nceton University}},
  year        = 2022,
  url         = {https://doi.org/10.11578/1888268}
}
Description:

Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.

Show More
# Filename Filesize
1 README.txt 2.93 KB
2 Figure_1.pdf 11.3 KB
3 Figure_10.pdf 50 KB
4 Figure_10_a_contour_r.csv 14.7 KB
5 Figure_10_a_contour_value.csv 21.7 KB
6 Figure_10_a_contour_z.csv 15.1 KB
7 Figure_10_a_lcfs.csv 607 Bytes
8 Figure_10_b_contour_r.csv 14.7 KB
9 Figure_10_b_contour_value.csv 21.8 KB
10 Figure_10_b_contour_z.csv 15 KB
11 Figure_10_b_lcfs.csv 609 Bytes
12 Figure_11.pdf 16.4 KB
13 Figure_11_data.csv 369 Bytes
14 Figure_1_data.csv 1.9 KB
15 Figure_1_generation.nb 18.6 KB
16 Figure_2.pdf 12.2 KB
17 Figure_2_data.csv 506 Bytes
18 Figure_3.pdf 16.8 KB
19 Figure_3_data.csv 1.22 KB
20 Figure_3_generation.nb 52.8 KB
21 Figure_4.pdf 31.9 KB
22 Figure_4_a.csv 8.62 KB
23 Figure_4_b.csv 8.71 KB
24 Figure_4_c.csv 8.66 KB
25 Figure_5.pdf 34.9 KB
26 Figure_5_scan1.csv 1.85 KB
27 Figure_5_scan1b.csv 373 Bytes
28 Figure_5_scan2.csv 1.85 KB
29 Figure_5_scan3.csv 1.87 KB
30 Figure_5_scan4.csv 1.85 KB
31 Figure_6.pdf 15.9 KB
32 Figure_6_data.csv 825 Bytes
33 Figure_7.pdf 21.9 KB
34 Figure_7_data.csv 1.69 KB
35 Figure_8.pdf 23.8 KB
36 Figure_8_data.csv 2.36 KB
37 Figure_9.pdf 18.9 KB
38 Figure_9_DEMO.yaml 8.69 KB
39 Figure_9_FAROES_script.py 6.16 KB
40 Figure_9_analysis.py 9.11 KB
41 Figure_9_x_values.csv 1 KB
42 Figure_9_y_values.csv 1.01 KB
43 beta_stability_multipliers.py 465 Bytes
44 delta_-0.1_lcoe_199.2.sql 1.21 MB
45 delta_-0.1_lcoe_249.0.sql 1.21 MB
46 delta_-0.1_lcoe_250.0.sql 1.21 MB
47 delta_-0.1_lcoe_332.0.sql 1.21 MB
48 delta_-0.1_lcoe_398.4.sql 1.21 MB
49 delta_-0.1_lcoe_498.0.sql 1.21 MB
50 delta_-0.2_lcoe_199.2.sql 1.21 MB
51 delta_-0.2_lcoe_249.0.sql 1.21 MB
52 delta_-0.2_lcoe_250.0.sql 1.21 MB
53 delta_-0.2_lcoe_332.0.sql 1.21 MB
54 delta_-0.2_lcoe_398.4.sql 1.21 MB
55 delta_-0.2_lcoe_498.0.sql 1.21 MB
56 delta_-0.3_lcoe_199.2.sql 1.21 MB
57 delta_-0.3_lcoe_249.0.sql 1.21 MB
58 delta_-0.3_lcoe_250.0.sql 1.21 MB
59 delta_-0.3_lcoe_332.0.sql 1.21 MB
60 delta_-0.3_lcoe_398.4.sql 1.21 MB
61 delta_-0.3_lcoe_498.0.sql 1.21 MB
62 delta_-0.4_lcoe_199.2.sql 1.21 MB
63 delta_-0.4_lcoe_249.0.sql 1.21 MB
64 delta_-0.4_lcoe_250.0.sql 1.21 MB
65 delta_-0.4_lcoe_332.0.sql 1.21 MB
66 delta_-0.4_lcoe_398.4.sql 1.21 MB
67 delta_-0.4_lcoe_498.0.sql 1.21 MB
68 delta_-0.5_lcoe_199.2.sql 1.21 MB
69 delta_-0.5_lcoe_249.0.sql 1.21 MB
70 delta_-0.5_lcoe_250.0.sql 1.21 MB
71 delta_-0.5_lcoe_332.0.sql 1.21 MB
72 delta_-0.5_lcoe_398.4.sql 1.21 MB
73 delta_-0.5_lcoe_498.0.sql 1.21 MB
74 delta_-0.6_lcoe_150.0.sql 1.15 MB
75 delta_-0.6_lcoe_199.2.sql 1.21 MB
76 delta_-0.6_lcoe_249.0.sql 1.21 MB
77 delta_-0.6_lcoe_250.0.sql 1.21 MB
78 delta_-0.6_lcoe_332.0.sql 1.21 MB
79 delta_-0.6_lcoe_398.4.sql 1.21 MB
80 delta_-0.6_lcoe_498.0.sql 1.21 MB
81 delta_0.0_lcoe_199.2.sql 1.21 MB
82 delta_0.0_lcoe_249.0.sql 1.21 MB
83 delta_0.0_lcoe_250.0.sql 1.21 MB
84 delta_0.0_lcoe_332.0.sql 1.21 MB
85 delta_0.0_lcoe_398.4.sql 1.21 MB
86 delta_0.0_lcoe_498.0.sql 1.21 MB
87 delta_0.1_lcoe_199.2.sql 1.21 MB
88 delta_0.1_lcoe_249.0.sql 1.21 MB
89 delta_0.1_lcoe_250.0.sql 1.21 MB
90 delta_0.1_lcoe_332.0.sql 1.21 MB
91 delta_0.1_lcoe_398.4.sql 1.21 MB
92 delta_0.1_lcoe_498.0.sql 1.21 MB
93 delta_0.2_lcoe_150.0.sql 1.21 MB
94 delta_0.2_lcoe_199.2.sql 1.21 MB
95 delta_0.2_lcoe_249.0.sql 1.21 MB
96 delta_0.2_lcoe_250.0.sql 1.21 MB
97 delta_0.2_lcoe_332.0.sql 1.21 MB
98 delta_0.2_lcoe_398.4.sql 1.21 MB
99 delta_0.2_lcoe_498.0.sql 1.21 MB
100 delta_0.3_lcoe_199.2.sql 1.21 MB
101 delta_0.3_lcoe_249.0.sql 1.21 MB
102 delta_0.3_lcoe_250.0.sql 1.21 MB
103 delta_0.3_lcoe_332.0.sql 1.21 MB
104 delta_0.3_lcoe_398.4.sql 1.21 MB
105 delta_0.3_lcoe_498.0.sql 1.21 MB
106 delta_0.4_lcoe_199.2.sql 1.21 MB
107 delta_0.4_lcoe_249.0.sql 1.21 MB
108 delta_0.4_lcoe_250.0.sql 1.21 MB
109 delta_0.4_lcoe_332.0.sql 1.21 MB
110 delta_0.4_lcoe_398.4.sql 1.21 MB
111 delta_0.4_lcoe_498.0.sql 1.21 MB
112 delta_0.5_lcoe_199.2.sql 1.21 MB
113 delta_0.5_lcoe_249.0.sql 1.21 MB
114 delta_0.5_lcoe_250.0.sql 1.21 MB
115 delta_0.5_lcoe_332.0.sql 1.21 MB
116 delta_0.5_lcoe_398.4.sql 1.21 MB
117 delta_0.5_lcoe_498.0.sql 1.21 MB
118 delta_0.6_lcoe_199.2.sql 1.21 MB
119 delta_0.6_lcoe_249.0.sql 1.21 MB
120 delta_0.6_lcoe_250.0.sql 1.21 MB
121 delta_0.6_lcoe_332.0.sql 1.21 MB
122 delta_0.6_lcoe_398.4.sql 1.21 MB
123 delta_0.6_lcoe_498.0.sql 1.21 MB
124 tokamak_model.py 15.7 KB