Plasma Facing Components with Capillary Porous System and Liquid Metal Coolant Flow

Khodak, Andrei ; Maingi, Rajesh
Issue date: 2021
Rights:
Creative Commons Attribution 4.0 International (CC BY)
Cite as:
Khodak, Andrei & Maingi, Rajesh. (2021). Plasma Facing Components with Capillary Porous System and Liquid Metal Coolant Flow [Data set]. Princeton Plasma Physics Laboratory, Princeton University. https://doi.org/10.11578/1888272
@electronic{khodak_andrei_2021,
  author      = {Khodak, Andrei and
                Maingi, Rajesh},
  title       = {{Plasma Facing Components with Capillary
                Porous System and Liquid Metal Coolant F
                low}},
  publisher   = {{Princeton Plasma Physics Laboratory, Pri
                nceton University}},
  year        = 2021,
  url         = {https://doi.org/10.11578/1888272}
}
Description:

Liquid metal can create a renewable protective surface on plasma facing components (PFC), with an additional advantage of deuterium pumping and the prospect of tritium extraction if liquid lithium (LL) is used and maintained below 450 C, the temperature above which LL vapor pressure begins to contaminate the plasma. LM can also be utilized as an efficient coolant, driven by the Lorentz force created with the help of the magnetic field in fusion devices. Capillary porous systems can serve as a conduit of LM and simultaneously provide stabilization of the LM flow, protecting against spills into the plasma. Recently a combination of a fast-flowing LM cooling system with a porous plasma facing wall (CPSF) was investigated [Khodak and Maingi (2021)]. The system takes an advantage of a magnetohydrodynamics velocity profile, as well as attractive LM properties to promote efficient heat transfer from the plasma to the LL at low pumping energy cost, relative to the incident heat flux on the PFC. In case of a disruption leading to excessive heat flux from the plasma to the LM PFCs, LL evaporation can stabilize the PFC surface temperature, due to high evaporation heat and apparent vapor shielding. The proposed CPSF was optimized analytically for the conditions of a Fusion Nuclear Science Facility [Kessel et al. (2019)]: 10T toroidal field and 10 MW/m2 peak incident heat flux. Computational fluid dynamics analysis confirmed that a CPSF system with 2.5 mm square channels can pump enough LL so that no additional coolant is needed.

Show More