Data for reproducing the figures of the paper Multimodal Super-Resolution: Discovering hidden physics and its application to fusion plasmas

Jalalvand, Azarakhsh ; Kim, SangKyeun ; Seo, Jaemin ; Hu, Qiming ; Curie, Max ; Steiner, Peter ; Nelson, Andrew ; Na, Yong-Su ; Kolemen, Egemen
Issue date: 2025
Rights:
Creative Commons Attribution 4.0 International (CC BY)
Cite as:
Jalalvand, Azarakhsh, Kim, SangKyeun, Seo, Jaemin, Hu, Qiming, Curie, Max, Steiner, Peter, Nelson, Andrew, Na, Yong-Su, & Kolemen, Egemen. (2025). Data for reproducing the figures of the paper Multimodal Super-Resolution: Discovering hidden physics and its application to fusion plasmas [Data set]. Version 1. Princeton University. https://doi.org/10.34770/nex7-3y26
@electronic{jalalvand_azarakhsh_2025,
  author      = {Jalalvand, Azarakhsh and
                Kim, SangKyeun and
                Seo, Jaemin and
                Hu, Qiming and
                Curie, Max and
                Steiner, Peter and
                Nelson, Andrew and
                Na, Yong-Su and
                Kolemen, Egemen},
  title       = {{Data for reproducing the figures of the
                paper Multimodal Super-Resolution: Disco
                vering hidden physics and its applicatio
                n to fusion plasmas}},
  version     = 1,
  publisher   = {{Princeton University}},
  year        = 2025,
  url         = {https://doi.org/10.34770/nex7-3y26}
}
Description:

This deposit contains the raw data for reproducing research results of the paper Multimodal Super-Resolution: Discovering hidden physics and its application to fusion plasmas. The main contribution of this work is to utilize machine learning techniques to reconstruct and enhance the resolution of a diagnostic measurement from other available diagnostics in a system. The proposed techniques is called Diag2Diag.

Show More