Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Gilson, Erik; Lee, H.; Bortolon, A.; Choe, W.; Diallo, A.; Hong, S. H.; Lee, H. M.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Park, S. H.; Song, I. W.; Song, J. I.; Yun, S. W.; Yoon, S. W.; Nazikian, R.
Gartner, Thomas III; Zhang, Linfeng; Piaggi, Pablo; Car, Roberto; Panagiotopoulos, Athanassios; Debenedetti, Pablo
Abstract:
This dataset contains all data related to the publication "Signatures of a liquid-liquid transition in an ab initio deep neural network model for water", by Gartner et al., 2020. In this work, we used neural networks to generate a computational model for water using high-accuracy quantum chemistry calculations. Then, we used advanced molecular simulations to demonstrate evidence that suggests this model exhibits a liquid-liquid transition, a phenomenon that can explain many of water's anomalous properties. This dataset contains links to all software used, all data generated as part of this work, as well as scripts to generate and analyze all data and generate the plots reported in the publication.
This dataset is a sequence of laser-induced fluorescence images of a dye injected in a channel flow with canopy-like stainless steel rods simulating a vegetation canopy stand. The data is acquired close to the channel bottom at z/h=0.2, where z is the height referenced to the channel bed and h is the canopy height. The dataset provides spatial distribution of scalar concentration in a plane parallel to the channel bed. The data has been used (but the data itself has not been published or available to the public) in previous work. The references are: Ghannam, K., Poggi, D., Porporato, A., & Katul, G. (2015). The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorology,157(3), 447–460. Ghannam, K, Poggi, D., Bou-Zeid, E., Katul, G. (2020). Inverse cascade evidenced by information entropy of passive scalars in submerged canopy flows. Geophysical Research Letters (accepted).
We provide all the test data and corresponding predictions for our paper, “Practical Fluorescence Reconstruction Microscopy for High-Content Imaging”. Please refer to the Methods section in this paper for experimental details. For each experimental condition, we provide the input transmitted-light images (either phase contrast or DIC), the ground truth fluorescence images, and the output predicted fluorescence images which should reconstruct the ground truth fluorescence images.
Martin, James K; Sheehan, Joseph P; Bratton, Benjamin P; Moore, Gabriel M; Mateus, André; Li, Sophia Hsin-Jung; Kim, Hahn; Rabinowitz, Joshua D; Typas, Athanasios; Savitski, Mikhail M; Wilson, Maxwell Z; Gitai, Zemer