Data set used to train a Deep Potential (DP) model for
subcritical and supercritical water. Training data contain atomic forces,
potential energy, atomic coordinates and cell tensor. Energy and forces
were evaluated with the density functional SCAN. Atomic configurations
were extracted from DP molecular dynamics at P = 250 bar and
T = 553, 623, 663, 733 and 823 K. Input files used to train the DP model
are also provided.
The multi-scale, mutli-physics nature of fusion plasmas makes predicting plasma events challenging. Recent advances in deep convolutional neural network architectures (CNN) utilizing dilated convolutions enable accurate predictions on sequences which have long-range, multi-scale characteristics, such as the time-series generated by diagnostic instruments observing fusion plasmas. Here we apply this neural network architecture to the popular problem of disruption prediction in fusion tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from the DIII-D tokamak. ECEi measures a fundamental plasma quantity (electron temperature) with high temporal resolution over the entire plasma discharge, making it sensitive to a number of potential pre-disruptions markers with different temporal and spatial scales. Promising, initial disruption prediction results are obtained training a deep CNN with large receptive field ({$\sim$}30k), achieving an $F_1$-score of {$\sim$}91\% on individual time-slices using only the ECEi data.
Taylor, Jenny A.; Bratton, Benjamin P.; Sichel, Sophie R.; Blair, Kris M.; Jacobs, Holly M.; DeMeester, Kristen E.; Kuru, Erkin; Gray, Joe; Biboy, Jacob; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Grimes, Catherine L.; Shaevitz, Joshua W.; Salama, Nina R.
Abstract:
Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. We show that the helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod bacteria. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.
The Enhanced Pedestal (EP) H-mode regime is an attractive wide-pedestal ELM-free high-betap scenario for NSTX-U and next-step devices as it achieves enhanced energy confinement (H98y,2 > 1.5), large normalized pressure (betaN > 5) and significant bootstrap fraction (f_BS > 0.6) at I_p/B_T = 2 MA/T. This regime is realized when the edge ion collisionality becomes sufficiently small that a positive feedback interaction occurs between a reduction in the ion neoclassical energy transport and an increase in the particle transport from pressure-driven edge instabilities. EP H-mode was most often observed as a transition following a large ELM in conditions with low edge neutral recycling. It is hypothesized that the onset of pressure-driven instabilities prior to the full recovery of the neutral density leads to a temporary period with elevated ion temperature gradient that triggers the transition to EP H-mode. Linear CGYRO and M3D-C1 calculations are compared to beam emission spectroscopy (BES) and magnetic spectroscopy in order to describe the evolution of the edge particle transport mechanisms during the ELM recovery and the saturated EP H-mode state. The observations are consistent with the hypothesis that the onset of pressure-driven edge instabilities, such as the KBM and kink-peeling, can be responsible for the increased particle transport in EP H-mode.
Kim, Donghoon; Tracy, Sally J.; Smith, Raymond F.; Gleason, Arianna E.; Bolme, Cindy A.; Prakapenka, Vitali B.; Appel, Karen; Speziable, Sergio; Wicks, June K.; Berryman, Eleanor J.; Han, Sirus K.; Schoelmerich, Markus O.; Lee, Hae Ja; Nagler, Bob; Cunningham, Eric F.; Akin, Minta C.; Asimow, Paul D.; Eggert, Jon H.; Duffy, Thomas S.
Abstract:
The behavior of forsterite, Mg2SiO4, under dynamic compression is of fundamental importance for understanding its phase transformations and high-pressure behavior. Here, we have carried out an in situ X-ray diffraction study of laser-shocked poly- and single-crystal forsterite (a-, b-, and c- orientations) from 19 to 122 GPa using the Matter in Extreme Conditions end-station of the Linac Coherent Light Source. Under laser-based shock loading, forsterite does not transform to the high-pressure equilibrium assemblage of MgSiO3 bridgmanite and MgO periclase, as was suggested previously. Instead, we observe forsterite and forsterite III, a metastable polymorph of Mg2SiO4, coexisting in a mixed-phase region from 33 to 75 GPa for both polycrystalline and single-crystal samples. Densities inferred from X-ray diffraction data are consistent with earlier gas-gun shock data. At higher stress, the behavior observed is sample-dependent. Polycrystalline samples undergo amorphization above 79 GPa. For [010]- and [001]-oriented crystals, a mixture of crystalline and amorphous material is observed to 108 GPa, whereas the [100]-oriented crystal adopts an unknown crystal structure at 122 GPa. The Q values of the first two sharp diffraction peaks of amorphous Mg2SiO4 show a similar trend with compression as those observed for MgSiO3 glass in both recent static and laser-compression experiments. Upon release to ambient pressure, all samples retain or revert to forsterite with evidence for amorphous material also present in some cases. This study demonstrates the utility of femtosecond free-electron laser X-ray sources for probing the time evolution of high-pressure silicates through the nanosecond-scale events of shock compression and release.
The data provided in this DataSpace consists of sample training data to be used for Fluorescence Reconstruction Microscopy (FRM) testing. We provide a subset of the keratinocyte (10x magnification) dataset used in our paper, in which interested parties may find more complete information about our data collection methods. Matched pairs of phase contrast and fluorescent images are given. The nuclei were stained using Hoechst 33342 and imaged using a standard DAPI filter set.
The data provided in this DataSpace consists of sample training data to be used for Fluorescence Reconstruction Microscopy (FRM) testing. We provide a subset of the MDCK (20x magnification) dataset used in our paper, in which interested parties may find more complete information about our data collection methods. Matched pairs of DIC and fluorescent images are given. The cells stably expressed E-cadherin:RFP which enabled imaging of junctional fluorescence, while the nuclei were stained using Hoechst 33342 and imaged using a standard DAPI filter set.
We provide all the test data and corresponding predictions for our paper, “Practical Fluorescence Reconstruction Microscopy for High-Content Imaging”. Please refer to the Methods section in this paper for experimental details. For each experimental condition, we provide the input transmitted-light images (either phase contrast or DIC), the ground truth fluorescence images, and the output predicted fluorescence images which should reconstruct the ground truth fluorescence images.
Hager, R.; Chang, C. S.; Ferraro, N. M.; Nazikian R.
Abstract:
Self-consistent simulations of neoclassical and electrostatic turbulent transport in a DIII-D H-mode edge plasma under resonant magnetic perturbations (RMPs) have been performed using the global total-f gyrokinetic particle-in-cell code XGC, in order to study density-pump out and electron heat confinement.The RMP field is imported from the extended magneto-hydrodynamics (MHD) code M3D-C1, taking into account the linear two-fluid plasma response.With both neoclassical and turbulence physics considered together, the XGC simulation reproduces two key features of experimentally observed edge transport under RMPs: increased radial particle transport in the pedestal region that is sufficient to account for the experimental pump-out rate, and suppression of the electron heat flux in the steepest part of the edge pedestal.In the simulation, the density fluctuation amplitude of modes moving in the electron diamagnetic direction increases due to interaction with RMPs in the pedestal shoulder and outward, while the electron temperature fluctuation amplitude decreases.
Zweben SJ; Fredrickson ED; Myra JR; Podesta M; Scotti F
Abstract:
This paper describes a study of the cross-correlations between edge fluctuations as seen in the gas puff imaging (GPI) diagnostic and low frequency coherent magnetic fluctuations (MHD) in H-mode plasmas in NSTX. The main new result was that large blobs in the SOL were significantly correlated with MHD activity the 3-6 kHz range in 21 of the 223 shots examined. There were also many other shots in which fluctuations in the GPI signal level and its peak radius Rpeak were correlated with MHD activity, but without any significant correlation of the MHD with large blobs. The structure and motion of the MHD is compared with that of the correlated blobs, and some possible theoretical mechanisms for the MHD-blob correlation are discussed.