This distribution compiles numerous physical properties for 2,585 intrinsically disordered proteins (IDPs) obtained by coarse-grained molecular dynamics simulation. This combination comprises "Dataset A" as reported in "Featurization strategies for polymer sequence or composition design by machine learning" by Roshan A. Patel, Carlos H. Borca, and Michael A. Webb (DOI: 10.1039/D1ME00160D). The specific IDP sequences are sourced from version 9.0 of the DisProt database. The simulations were performed using the LAMMPS molecular dynamics engine. The interactions used for simulation are obtained from R. M. Regy , J. Thompson , Y. C. Kim and J. Mittal , Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins, Protein Sci., 2021, 1371 —1379.
The dataset contains the model file for the Global Adjoint Tomography Model 25 (GLAD-M25). The model file contains parameters defined on the spectral-element mesh and is recommend to be used in SPECFEM3D GLOBE for seismic wave simulation at the global scale.
There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.
This dataset contains input and output files to reproduce the results of the manuscript "Homogeneous ice nucleation in an ab initio machine learning model" by Pablo M. Piaggi, Jack Weis, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, and Roberto Car (arXiv preprint https://arxiv.org/abs/2203.01376). In this work, we studied the homogeneous nucleation of ice from supercooled liquid water using a machine learning model trained on ab initio energies and forces. Since nucleation takes place over times much longer than the simulation times that can be afforded using molecular dynamics simulations, we make use of the seeding technique that is based on simulating an ice cluster embedded in liquid water. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or shrinking at the given supersaturation). Using data from the seeding simulations and the equations of classical nucleation theory we compute nucleation rates that can be compared with experiments.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.
This distribution contains experimentally measured data for the extent of retained enzyme activity post thermal stressing for three distinct enzymes: glucose oxidase, lipase, and horseradish peroxidase. The data is used to form conclusions and develop machine learning models as reported in the publication "Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids" by Matthew Tamasi, Roshan Patel, Carlos Borca, Shashank Kosuri, Heloise Mugnier, Rahul Upadhya, N. Sanjeeva Murthy, Michael Webb*, and Adam Gormley. Details regarding the experimental protocols are reported in the aforementioned paper but are briefly discussed in the README.
Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
Abstract:
Ion orbit loss is considered important for generating the radially inward electric field Er in a tokamak edge plasma. In particular, this effect is emphasized in diverted tokamaks with a magnetic X point. In neoclassical equilibria, Coulomb collisions can scatter ions onto loss orbits and generate a radially outward current, which in steady state is balanced by the radially inward current from viscosity. To quantitatively measure this loss-orbit current in an edge pedestal, an ion-orbit-flux diagnostic has been implemented in the axisymmetric version of the gyrokinetic particle-in-cell code XGC. As the first application of this diagnostic, a neoclassical DIII-D H-mode plasma is studied using gyrokinetic ions and adiabatic electrons. The validity of the diagnostic is demonstrated by studying the collisional relaxation of Er in the core. After this demonstration, the loss-orbit current is numerically measured in the edge pedestal in quasisteady state. In this plasma, it is found that the radial electric force on ions from Er approximately balances the ion radial pressure gradient in the edge pedestal, with the radial force from the plasma flow term being a minor component. The effect of orbit loss on Er is found to be only mild.