Microscopy images are part of a paper entitled "Structured foraging of soil predators unveils functional responses to bacterial defenses" by Fernando Rossine, Gabriel Vercelli, Corina Tarnita, and Thomas Gregor. For detailed acquisition methods see the paper. Experiments were performed between 2019 and 2020 at Princeton University. Two types of images are provided, macroscopic and microscopic widefiled Images. Macroscopic images all show Petri dishes covered in fluorescent bacteria being consumed by amoebae. Images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum. Images used for the creation of a profile were all taken within 30 minutes of each other. Within each directory numbered images are independent replicates. The raw video directory contains time series for dishes under drug treatments. Each numbered folder is a sequence of photos (taken 30 minutes apart of each other) of a single dish. Microscopic images all show amoebae consuming bacteria on a petri dish. The 45 minute videos show either edge cells (located at the edge of amoebae colonies), or inner cells (located 2.5 millimeters towards the center of the colony, from the edge). Videos are confocal stacks, with bacteria showing in green and amoebae appearing as black holes within the bacterial lawn. As was for the macroscopic images, images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum.
Guo, Xuehui; Pan, Da; Daly, Ryan; Chen, Xi; Walker, John; Tao, Lei; McSpiritt, James; Zondlo, Mark
Abstract:
Gas-phase ammonia (NH3), emitted primarily from agriculture, contributes significantly to reactive nitrogen (Nr) deposition. Excess deposition of Nr to the environment causes acidification, eutrophication, and loss of biodiversity. The exchange of NH3 between land and atmosphere is bidirectional and can be highly heterogenous when underlying vegetation and soil characteristics differ. Direct measurements that assess the spatial heterogeneity of NH3 fluxes are lacking. To this end, we developed and deployed two fast-response, quantum cascade laser-based open-path NH3 sensors to quantify NH3 fluxes at a deciduous forest and an adjacent grassland separated by 700 m in North Carolina, United States from August to November, 2017. The sensors achieved 10 Hz precisions of 0.17 ppbv and 0.23 ppbv in the field, respectively. Eddy covariance calculations showed net deposition of NH3 (-7.3 ng NH3-N m−2 s−1) to the forest canopy and emission (3.2 ng NH3-N m−2 s−1) from the grassland. NH3 fluxes at both locations displayed diurnal patterns with absolute magnitudes largest midday and with smaller peaks in the afternoons. Concurrent biogeochemistry data showed over an order of magnitude higher NH3 emission potentials from green vegetation at the grassland compared to the forest, suggesting a possible explanation for the observed flux differences. Back trajectories originating from the site identified the upwind urban area as the main source region of NH3. Our work highlights the fact that adjacent natural ecosystems sharing the same airshed but different vegetation and biogeochemical conditions may differ remarkably in NH3 exchange. Such heterogeneities should be considered when upscaling point measurements, downscaling modeled fluxes, and evaluating Nr deposition for different natural land use types in the same landscape. Additional in-situ flux measurements accompanied by comprehensive biogeochemical and micrometeorological records over longer periods are needed to fully characterize the temporal variabilities and trends of NH3 fluxes and identify the underlying driving factors.
This distribution compiles numerous physical properties for 2,585 intrinsically disordered proteins (IDPs) obtained by coarse-grained molecular dynamics simulation. This combination comprises "Dataset A" as reported in "Featurization strategies for polymer sequence or composition design by machine learning" by Roshan A. Patel, Carlos H. Borca, and Michael A. Webb (DOI: 10.1039/D1ME00160D). The specific IDP sequences are sourced from version 9.0 of the DisProt database. The simulations were performed using the LAMMPS molecular dynamics engine. The interactions used for simulation are obtained from R. M. Regy , J. Thompson , Y. C. Kim and J. Mittal , Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins, Protein Sci., 2021, 1371 —1379.
The dataset contains the model file for the Global Adjoint Tomography Model 25 (GLAD-M25). The model file contains parameters defined on the spectral-element mesh and is recommend to be used in SPECFEM3D GLOBE for seismic wave simulation at the global scale.
There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.
Geyman, Emily C.; Wu, Ziman; Nadeau, Matthew D.; Edmonsond, Stacey; Turner, Andrew; Purkis, Sam J.; Howes, Bolton; Dyer, Blake; Ahm, Anne-Sofie C.; Yao, Nan; Deutsch, Curtis A.; Higgins, John A.; Stolper, Daniel A.; Maloof, Adam C.
Abstract:
Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. In this contribution, we present new geochemical data that bear on this problem, including stable isotope and minor and trace element data from carbonate sources in the modern Bahamas such as ooids, corals, foraminifera, and green algae.
This dataset contains input and output files to reproduce the results of the manuscript "Homogeneous ice nucleation in an ab initio machine learning model" by Pablo M. Piaggi, Jack Weis, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, and Roberto Car (arXiv preprint https://arxiv.org/abs/2203.01376). In this work, we studied the homogeneous nucleation of ice from supercooled liquid water using a machine learning model trained on ab initio energies and forces. Since nucleation takes place over times much longer than the simulation times that can be afforded using molecular dynamics simulations, we make use of the seeding technique that is based on simulating an ice cluster embedded in liquid water. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or shrinking at the given supersaturation). Using data from the seeding simulations and the equations of classical nucleation theory we compute nucleation rates that can be compared with experiments.
This dataset contains all data relevant to a forthcoming publication in which we used molecular simulation methods to study the phase behavior of supercooled water. The dataset contains simulation input and output files, processed data files, and image files used to create all plots in the manuscript. Python analysis scripts are also included, including instructions for how to re-generate all plots in the manuscript.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.
This distribution contains experimentally measured data for the extent of retained enzyme activity post thermal stressing for three distinct enzymes: glucose oxidase, lipase, and horseradish peroxidase. The data is used to form conclusions and develop machine learning models as reported in the publication "Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids" by Matthew Tamasi, Roshan Patel, Carlos Borca, Shashank Kosuri, Heloise Mugnier, Rahul Upadhya, N. Sanjeeva Murthy, Michael Webb*, and Adam Gormley. Details regarding the experimental protocols are reported in the aforementioned paper but are briefly discussed in the README.
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
Data set for "Ocean emission of microplastic by bursting bubble jet drops." Two .csv files are provided: one for the size of a jet drop carrying microplastic, and another for the amount of microplastic captured by a jet drop.
Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
Abstract:
Ion orbit loss is considered important for generating the radially inward electric field Er in a tokamak edge plasma. In particular, this effect is emphasized in diverted tokamaks with a magnetic X point. In neoclassical equilibria, Coulomb collisions can scatter ions onto loss orbits and generate a radially outward current, which in steady state is balanced by the radially inward current from viscosity. To quantitatively measure this loss-orbit current in an edge pedestal, an ion-orbit-flux diagnostic has been implemented in the axisymmetric version of the gyrokinetic particle-in-cell code XGC. As the first application of this diagnostic, a neoclassical DIII-D H-mode plasma is studied using gyrokinetic ions and adiabatic electrons. The validity of the diagnostic is demonstrated by studying the collisional relaxation of Er in the core. After this demonstration, the loss-orbit current is numerically measured in the edge pedestal in quasisteady state. In this plasma, it is found that the radial electric force on ions from Er approximately balances the ion radial pressure gradient in the edge pedestal, with the radial force from the plasma flow term being a minor component. The effect of orbit loss on Er is found to be only mild.
A new model for electron temperature gradient (ETG) modes is developed as a component of the Multi-Mode anomalous transport module [T. Rafiq \textit{et al.,} Phys Plasmas \textbf{20}, 032506 (2013)] to predict a time dependent electron temperature profile in conventional and low aspect ratio tokamaks. This model is based on two-fluid equations that govern the dynamics of low-frequency short- and long-wavelength electromagnetic toroidal ETG driven drift modes. A low collisionality NSTX discharge is used to scan the plasma parameter dependence on the ETG real frequency, growth rate, and electron thermal diffusivity. Electron thermal transport is discovered in the deep core region where modes are more electromagnetic in nature. Several previously reported gyrokinetic trends are reproduced, including the dependencies of density gradients, magnetic shear, $\beta$ and gradient of $\beta$ $(\betap)$, collisionality, safety factor, and toroidicity, where $\beta$ is the ratio of plasma pressure to the magnetic pressure. The electron heat diffusivity associated with the ETG mode is discovered to be on a scale consistent with the experimental diffusivity determined by power balance analysis.
Petsev, Nikolai D.; Nikoubashman, Arash; Latinwo, Folarin
Abstract:
Source code for our genetic algorithm optimization investigation of conglomerate and racemic chiral crystals. In this work, we address challenges in determining the stable structures formed by chiral molecules by applying the framework of genetic algorithms to predict the ground state crystal lattices formed by a chiral tetramer model. Using this code, we explore the relative stability and structures of the model’s conglomerate and racemic crystals, and extract a structural phase diagram for the stable Bravais crystal types in the zero-temperature limit.
Stoltzfus-Dueck, T; Hornsby, W A; Grosshauser, S R
Abstract:
Ion Landau damping interacts with a portion of the E×B drift to cause a non-diffusive outward flux of co-current toroidal angular momentum. Quantitative evaluation of this momentum flux requires nonlinear simulations to determine fL, the fraction of fluctuation free energy that passes through ion Landau damping, in fully developed turbulence. Nonlinear gyrokinetic simulations with the GKW code confirm the presence of the systematic symmetry-breaking momentum flux. For simulations with adiabatic electrons, fL scales inversely with the ion temperature gradient, because only the ion curvature drift can transfer free energy to the electrostatic potential. Although kinetic electrons should in principle relax this restriction, the ion Landau damping measured in collisionless kinetic-electron simulations remained at low levels comparable with ion-curvature-drift transfer, except when magnetic shear was strong. A set of simulations scanning the electron pitch-angle scattering rate showed only a weak variation of fL with the electron collisionality. However, collisional-electron simulations with electron temperature greater than ion temperature unambiguously showed electron-curvature-drift transfer supporting ion Landau damping, leading to a corresponding enhancement of the symmetry-breaking momentum flux.
This dataset is affiliated with the publication https://doi.org/10.1007/s00348-022-03455-0. All of the data provided is necessary to reproduce the results with the aforementioned publication. The data in this repository is for the wake of a wind turbine at high Reynolds numbers. The data is mainly used for reproducing the statistics (deficit and variance profiles) and the phase averaged results.
Using a recently installed impurity powder dropper (IPD), boron powder (< 150 μm) was injected into lower single null (LSN) L-mode discharges in WEST. IPDs possibly enable real-time wall conditioning of the plasma-facing components and may help to facilitate H-mode access in the full-tungsten environment of WEST. The discharges in this experiment featured Ip = 0.5 MA, BT = 3.7 T, q95 = 4.3, tpulse = 12–30 s, ne,0 ~ 4×1019 m-2, and PLHCD ~ 4.5 MW. Estimates of the deuterium and impurity particle fluxes, derived from a combination of visible spectroscopy measurements and their corresponding S/XB coefficients, showed decreases of ~ 50% in O+, N+, and C+ populations during powder injection and a moderate reduction of these low-Z impurities (~ 50%) and W (~ 10%) in the discharges that followed powder injection. Along with the improved wall conditions, WEST discharges with B powder injection observed improved confinement, as the stored energy WMHD, neutron rate, and electron temperature Te increased significantly (10–25% for WMHD and 60–200% for the neutron rate) at constant input power. These increases in confinement scale up with the powder drop rate and are likely due to the suppression of ion temperature gradient (ITG) turbulence from changes in Zeff and/or modifications to the electron density profile.
These GROMACS trajectories show the existence of a critical point in deeply supercooled WAIL water. Also included is the code necessary to reproduce the figures in the corresponding paper from these trajectories. From this data the critical temperature, pressure, and density of the model can be found, and critical fluctuations in the deeply supercooled liquid can be directly observed (in a computer-simulation sense).
The growth of magnetic islands in NSTX is modeled successfully, with the consideration of passing fast ions. It is shown that a good quantitative agreement between simulation and experimental measurement can be achieved when the uncompensated cross-field current induced by passing fast ions is included in the island growth model. The fast ion parameters,
along with other equilibrium parameters, are obtained self-consistently using the TRANSP code with the assumptions of the ‘kick’ model (Podestà et al 2017 Plasma Phys. Control. Fusion 59 095008). The results show that fast ions can contribute to overcoming the stabilizing effect of polarization current for magnetic island growth.
Non-axisymmetric magnetic fields arising in a tokamak either by external or internal perturbations can induce complex non-ideal MHD responses in their resonant surfaces while remaining ideally evolved elsewhere. This layer response can be characterized in a linear regime by a single parameter called the inner-layer Delta, which enables outer-layer matching and the prediction of torque balance to non-linear island regimes. Here, we follow strictly one of the most comprehensive analytic treatments including two-fluid and drift MHD effects and keep the fidelity of the formulation by incorporating the numerical method based on the Riccati transformation when quantifying the inner-layer Delta. The proposed scheme reproduces not only the predicted responses in essentially all asymptotic regimes but also with continuous transitions as well as improved accuracies. In particular, the Delta variations across the inertial regimes with viscous or semi-collisional effects have been further resolved, in comparison with additional analytic solutions. The results imply greater shielding of the electromagnetic torque at the layer than what would be expected by earlier work when the viscous or semi-collisional effects can compete against the inertial effects, and also due to the intermediate regulation by kinetic Alfven wave resonances as rotation slows down. These are important features that can alter the nonaxisymmetric plasma responses including the field penetration by external fields or island seeding process in rotating tokamak plasmas.
Liquid metal can create a renewable protective surface on plasma facing components (PFC), with an additional advantage of deuterium pumping and the prospect of tritium extraction if liquid lithium (LL) is used and maintained below 450 C, the temperature above which LL vapor pressure begins to contaminate the plasma. LM can also be utilized as an efficient coolant, driven by the Lorentz force created with the help of the magnetic field in fusion devices. Capillary porous systems can serve as a conduit of LM and simultaneously provide stabilization of the LM flow, protecting against spills into the plasma. Recently a combination of a fast-flowing LM cooling system with a porous plasma facing wall (CPSF) was investigated [Khodak and Maingi (2021)]. The system takes an advantage of a magnetohydrodynamics velocity profile, as well as attractive LM properties to promote efficient heat transfer from the plasma to the LL at low pumping energy cost, relative to the incident heat flux on the PFC. In case of a disruption leading to excessive heat flux from the plasma to the LM PFCs, LL evaporation can stabilize the PFC surface temperature, due to high evaporation heat and apparent vapor shielding. The proposed CPSF was optimized analytically for the conditions of a Fusion Nuclear Science Facility [Kessel et al. (2019)]: 10T toroidal field and 10 MW/m2 peak incident heat flux. Computational fluid dynamics analysis confirmed that a CPSF system with 2.5 mm square channels can pump enough LL so that no additional coolant is needed.
Kiefer, Janik; Brunner, Claudia E.; Hansen, Martin O. L.; Hultmark, Marcus
Abstract:
This data set contains data of a NACA 0021 airfoil as it undergoes upward ramp-type pitching motions at high Reynolds numbers and low Mach numbers. The parametric study covers a wide range of chord Reynolds numbers, reduced frequencies and pitching geometries characterized by varying mean angle and angle amplitude. The data were acquired in the High Reynolds number Test Facility at Princeton University, which is a closed-loop wind tunnel that can be pressurized up to 23 MPa and allowed for variation of the chord Reynolds number over a range of 5.0 × 10^5 ≤ Re_c ≤ 5.5 × 10^6. Data were acquired using 32 pressure taps along the surface of the airfoil. The data are the phase-averaged results of 150 individual half-cycles for any given test case.
This dataset includes information about approximately 6,000 books and other items with bibliographic data as well as summary information about when the item circulated in the Shakespeare and Company lending library and the number of times an item was borrowed or purchased.
The Shakespeare and Company Project: Lending Library Events dataset includes information about approximately 35,000 lending library events including membership activities such as subscriptions, renewals and reimbursements and book-related activities such as borrowing and purchasing. For events related to lending library cards that are available as digital surrogates, IIIF links are provided.
The Shakespeare and Company Project: Lending Library Members dataset includes information about approximately 5,200 members of Sylvia Beach's Shakespeare and Company lending library.
The Shakespeare and Company Project makes three datasets available to download in CSV and JSON formats. The datasets provide information about lending library members; the books that circulated in the lending library; and lending library events, including borrows, purchases, memberships, and renewals. The datasets may be used individually or in combination site URLs are consistent identifiers across all three.
The item included here is a collection of wave profiles collected and presented in the accompanying paper: Rucks, M. J., Winey, J. M., Toyoda, T., Gupta, Y. M., & Duffy, T. S. (in review). "Shock compression of fluorapatite to 120 GPa" Submitted to Journal of Geophysical Research: Planets.
This dataset includes individual CIF files with the refined structure of fluorapatite under compression to 61 GPa. The structures have been discussed in detail in the accompanying manuscript "Single-crystal X-ray diffraction of fluorapatite to 61 GPa"
This archive contains spike trains simultaneously recorded from ganglion cells in the tiger salamander retina with a multi-electrode array while viewing a repeated natural movie clip. These data have been analyzed in previous papers, notably Puchalla et al. Neuron 2005 and Schneidman et al. Nature 2006.
Kraus, B. Frances; Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Hollinger, R.; Wang, Shoujun; Song, Huanyu; Nedbailo, R.; Rocca, J. J.; Mancini, R. C.; MacDonald, M. J.; Beatty, C. B.; Shepherd, R.
Abstract:
A high-resolution x-ray spectrometer was coupled with an ultrafast x-ray streak camera to produce time-resolved line shape spectra measured from hot, solid-density plasmas. A Bragg crystal was placed near a laser-produced plasma to maximize throughput; alignment tolerances were established by raytracing. The streak camera produced single-shot time-resolved spectra, heavily sloped due to photon time-of-flight differences, with sufficient reproducibility to accumulate photon statistics. The images are time-calibrated by the slope of streaked spectra and dewarped to generate spectra emitted at different times defined at the source. The streaked spectra demonstrate the evolution of spectral shoulders and other features on ps timescales, showing the feasibility of plasma parameter measurements on the rapid timescales necessary to study high-energy-density plasmas.
Hill, K. W.; Gao, L.; Kraus, B. F.; Bitter, M.; Efthimion, P. C.; Pablant, N. A.; Schneider, M. B.; Thorn, D. B.; Chen, H.; Kauffman, R. L.; Liedahl, D. A.; MacDonald, M. J.; MacPhee, A. G.; Scott, H. A.; Stoupin, S.; Doron, R.; Stambulchik, E.; Maron, Y.; Lahmann, B.
Abstract:
Numerical data used to draw the figures in the manuscript
This dataset contains supplementary materials for Chapter 4 and Chapter 5 of Yiheng Tao's PhD dissertation (2022). The dissertation’s abstract is provided here:
Carbon capture, utilization, and storage (CCUS) mitigates climate change by capturing carbon dioxide (CO2) emissions from large point sources, or CO2 from the ambient air, and subsequently reusing the captured CO2 or injecting it into deep geological formations for long-term and secure storage. Almost all current decarbonization pathways include large-scale CCUS, on the order of a billion tonnes (Gt) of CO2 captured and stored each year globally starting in 2030, yet the actual deployment has lagged far behind (around 0.04 Gt CO2 was captured in 2021). In this dissertation, I contribute to several aspects of largescale deployment of CCUS by (1) developing and applying efficient numerical models to simulate geological CO2 storage and (2) identifying key policies to address the bottlenecks of overall CCUS deployment. This dissertation concerns the United States, China, and the Belt and Road Initiative (BRI) region through research projects that are consistent with each location’s current development stage of CCUS.
Chapters 2 and 3 contain computational modeling studies. In Chapter 2, I develop a new series of vertical-equilibrium (VE) models in the dual-continuum modeling framework to simulate CO2 injection and migration in fractured geological formations. Those models are shown to be effective and efficient when properties of the formation allow for the VE assumption. In Chapter 3, I apply a VE model to simulate basin-scale CO2 injection in the Junggar Basin of Northwestern China. The results show that current regional emissions of more than 100 million tonnes of CO2 per year can be stored effectively, thereby confirming the great potential of the Junggar Basin for early CCUS deployment.
Chapters 4 and 5 contain policy analyses. In Chapter 4, I propose a dynamic system consisting of new CO2 pipelines and novel Allam-cycle power plants in the Central United States, and examine how government policies, including an extended Section 45Q tax credit, may improve the economic feasibility of this system. Lastly, in Chapter 5, I investigate and quantify CO2 emissions implications of power plant projects associated with the BRI. I also propose a “greenness ratio” to measure the level of environmental sustainability of BRI in the power sector.
This is the supplemental material for the manuscript "Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane" submitted to Fusion Engineering and Design. This material includes PDF writeups of the derivations of the axisymmetric extended plane strain model, the elastic properties smearing model, and 20+ MATLAB scripts and functions which implement the model and generate the figures in the paper.
This entry contains video files and tabular data associated with the PhD dissertation titled: The Evolution and Regulation of Morphological Complexity in the Vibrios.
Kim, Chang-Goo; Ostriker, Eve; Gong, Munan; Kim, Jeong-Gyu
Abstract:
We present the public data release of the TIGRESS (Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback) simulations. This release includes simulations representing the solar neighborhood environment at spatial resolutions of 2 and 4 pc. The original magneto-hydrodynamic simulation data is published along with data products from post-processing, including chemistry, CO emission line, and photoionization (HII regions). Data reading and analysis examples are provided in Python.
In our study, we compare the three dimensional (3D) morphologic characteristics of Earth's first reef-building animals (archaeocyath sponges) with those of modern, photosynthetic corals. Within this repository are the 3D image data products for both groups of animals. The archaeocyath images were produced through serial grinding and imaging with the Grinding, Imaging, and Reconstruction Instrument at Princeton University. The images in this repository are the downsampled data products used in our study, and the full resolution (>2TB) image stacks are available upon request from the author. For the coral image data, the computed tomography (CT) images of all samples are included at full resolution. Also included in this repository are the manual and automated outline coordinates of the archaeocyath and coral branches, which can be directly used for morphological study.
Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
Abstract:
Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.
Gilson, Erik; Lee, H; Bortolon, A; Choe, W; Diallo, A; Hong, SH; Lee, HM; Maingi, R; Mansfield, DK; Nagy, A; Park, SH; Song, IW; Song, JI; Yun, SW; Nazikian, R
Abstract:
Results from KSTAR powder injection experiments, in which tens of milligrams of boron nitride (BN) were dropped into low-power H-mode plasmas, show an improvement in wall conditions in subsequent discharges and, in some cases, a reduction or elimination of edge-localized modes (ELMs). Injected powder is distributed by the plasma flow and is deposited on the wall and, over the course of several discharges, was observed to gradually reduce recycling by 33%, and decrease both the ELM amplitude and frequency. This is the first demonstration of the use of BN for ELM mitigation. In all of these experiments, an Impurity Powder Dropper (IPD) was used to introduce precise, controllable amounts of the materials into ELMy H-mode KSTAR discharges. The plasma duration was between 10 s and 15 s, 𝐼𝑝 = 500 kA, 𝐵𝑇 = 1.8 T, 𝑃NBI = 1.6 MW, and 𝑃ECH = 0.6 MW. Plasma densities were between 2 and 3 × 1019 m−3. In all cases, the pre-fill and startup gas-fueling was kept constant, suggesting that the decrease in baseline D𝛼 emission is in fact due to a reduction in recycling. The results presented herein highlight the viability of powder injection for intra-shot and between-shot wall conditioning.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.