Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
This item contains two files. A multi-layer perceptron (MLP) neural network is built using the MATLAB Deep Network Designer (.m file). It imports a quantum cascade laser (QCL) dataset and splits it into 70% training, 15% validation, and 15% testing subsets. The network consists of an input layer, three hidden layers (each having a normalization and activation layer), and a regression output layer. All of the layers are fully connected, and the root-mean-square error (RMSE) is used to evaluate the accuracy of the network. An algorithm is trained on the [-5, +20] QCL dataset using 50 neurons, ReLU activation function, solver Adam, 0.001 learning rate, over 50 epochs, and is saved to be used in the prediction of figure of merit values for QCL designs (.mat file).
This item contains two files. A multi-layer perceptron (MLP) neural network is built using the MATLAB Deep Network Designer (.m file). It imports a quantum cascade laser (QCL) dataset and splits it into 70% training, 15% validation, and 15% testing subsets. The network consists of an input layer, three hidden layers (each having a normalization and activation layer), and a regression output layer. All of the layers are fully connected, and the root-mean-square error (RMSE) is used to evaluate the accuracy of the network. An algorithm is trained on the [-2, +3] QCL dataset using 50 neurons, ReLU activation function, solver Adam, 0.001 learning rate, over 150 epochs, and is saved to be used in the prediction of figure of merit values for QCL designs (.mat file).
A code to identify the laser transition for a quantum cascade laser design based on the figure of merit. Variables such as the number of layers, and layer thicknesses, as well the applied electric field, materials composition, number of period repetitions, and layer tolerance ranges to generate random designs are specified. A folder containing a .csv file with all electronic state-pair transitions collected, a .png file of the bandstructure and the laser transition chosen (in red), for all electric field iterations, and a summary .csv file of all these laser transitions for a structure at each electric field is generated by the code. To use, first install ErwinJr2 on your computer. Then locate the "ErwinJr2" folder and copy these 6 files into that directory, overwriting the previous five files (Material.py, QCLayers.py, QCPlotter.py, QuantumTab.py, rFittings.py). Lastly, run the "acej-qcl-layer_10-lwrandom-v23.py" script using Python.
The "summary-fomstar-3lu-eVmiddle-19.csv" file is generated after running the laser transition code, with all of the data collected for one structure at many electric fields. Running the script various times will generate random structures with the same electric field range. Joining these "summary" .csv files makes a QCL dataset.
The Volumetric Camera Calibration Dataset is used for a camera calibration system. Intersecting laser beams are traversed over a volume in the test domain. At each location, the intersecting beams are imaged by camera1 and camera2. A test object is imaged for evaluation.
This dataset is created for the paper titled 'Co-benefits of Transport Demand Reductions from Compact Urban Development in Chinese Cities' and published on Nature Sustainability. We construct 6 scenarios of compact urban development, alternative energy vehicle deployment, and power decarbonization to explore the co-benefits of transport demand reductions via compact urban development for carbon emissions, energy use, air quality, and human health in China in 2050. This dataset provides the following gridded information for the scenarios: (1) monthly mean surface PM2.5 concentrations from the WRF-Chem model; (2) annual PM2.5-related premature deaths calculated by the GEMM model; (3) 2015 population in China; (4) mask for provinces in China; (5) longitude and latitude of each grid center.
O'Neill, Eric; Lark, Tyler; Xie, Yanhua; Basso, Bruno
Abstract:
Collection of the underlying spatially explicit data for Available Land for Cellulosic Biofuel Production: A Supply Chain Centered Comparison. Includes raw biomass yield data and soil carbon sequestration potential data for three types of marginal land for the USA midwest at the field level including field areas. Collection also includes raw land rasters for the three types of marginal land, model parameters for the MILP model used in the study, and results used to generate the figures in the paper.
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), remains a major medical problem. HBV has a high propensity for progressing to chronicity and can result in severe liver disease, including fibrosis, cirrhosis and hepatocellular carcinoma. CHB patients frequently present with viral coinfection, including HIV and hepatitis delta virus. About 10% of chronic HIV carriers are also persistently infected with HBV which can result in more exacerbated liver disease. Mechanistic studies of HBV-induced immune responses and pathogenesis, which could be significantly influenced by HIV infection, have been hampered by the scarcity of immunocompetent animal models. Here, we demonstrate that humanized mice dually engrafted with components of a human immune system and a human liver supported HBV infection, which was partially controlled by human immune cells, as evidenced by lower levels of serum viremia and HBV replication intermediates in the liver. HBV infection resulted in priming and expansion of human HLA-restricted CD8+ T cells, which acquired an activated phenotype. Notably, our dually humanized mice support persistent coinfections with HBV and HIV which opens opportunities for analyzing immune dysregulation during HBV and HIV coinfection and preclinical testing of novel immunotherapeutics.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments, and previously published observation-based datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments (pre-processed), previously published observation-based datasets, and code to reproduce figures from these datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
Griffies, Stephen M; Beadling, Rebecca L; Krasting, John P; Hurlin, William J
Abstract:
This output was produced in coordination with the Southern Ocean Freshwater release model experiments Initiative (SOFIA) and is the Tier 1 experiment where freshwater is delivered in a spatially and temporally uniform pattern at the surface of the ocean at sea surface temperature in a 1-degree latitude band extending from Antarctica’s coastline. The total additional freshwater flux imposed as a monthly freshwater flux entering the ocean is 0.1 Sv. Users are referred to the methods section of Beadling et al. (2022) for additional details on the meltwater implementation in CM4 and ESM4. The datasets in this collection contain model output from the coupled global climate model, CM4, and Earth System Model, ESM4, both developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). The ocean_monthly_z and ocean_annual_z output are provided as z depth levels in meters as opposed to the models native hybrid vertical ocean coordinate which consists of z* (quasi-geopotential) coordinates in the upper ocean through the mixed layer, transitioning to isopycnal (referenced to 2000 dbar) in the ocean interior. Please see README for further details.
Mondal, Shanka Subhra; Webb, Taylor; Cohen, Jonathan
Abstract:
A dataset of Raven’s Progressive Matrices (RPM)-like problems using realistically rendered
3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910)).
Piaggi, Pablo M; Gartner, Thomas E; Car, Roberto; Debenedetti, Pablo G
Abstract:
The possible existence of a liquid-liquid critical point in deeply supercooled water has been a subject of debate in part due to the challenges associated with providing definitive experimental evidence. Pioneering work by Mishima and Stanley [Nature 392, 164 (1998) and Phys.~Rev.~Lett. 85, 334 (2000)] sought to shed light on this problem by studying the melting curves of different ice polymorphs and their metastable continuation in the vicinity of the expected location of the liquid-liquid transition and its associated critical point. Based on the continuous or discontinuous changes in slope of the melting curves, Mishima suggested that the liquid-liquid critical point lies between the melting curves of ice III and ice V. Here, we explore this conjecture using molecular dynamics simulations with a purely-predictive machine learning model based on ab initio quantum-mechanical calculations. We study the melting curves of ices III, IV, V, VI, and XIII using this model and find that the melting lines of all the studied ice polymorphs are supercritical and do not intersect the liquid-liquid transition locus. We also find a pronounced, yet continuous, change in slope of the melting lines upon crossing of the locus of maximum compressibility of the liquid. Finally, we analyze critically the literature in light of our findings, and conclude that the scenario in which melting curves are supercritical is favored by the most recent computational and experimental evidence. Thus, although the preponderance of experimental and computational evidence is consistent with the existence of a second critical point in water, the behavior of the melting lines of ice polymorphs does not provide strong evidence in support of this viewpoint, according to our calculations.
The materials include codes and example input / output files for Monte Carlo simulations of lattice chains in the grand canonical ensemble, for determining phase behavior, critical points, and formation of aggregates.
In this publication we provide the LAMMPS example files to reproduce simulations for the manuscript "A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water"
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
Microscopy images are part of a paper entitled "Structured foraging of soil predators unveils functional responses to bacterial defenses" by Fernando Rossine, Gabriel Vercelli, Corina Tarnita, and Thomas Gregor. For detailed acquisition methods see the paper. Experiments were performed between 2019 and 2020 at Princeton University. Two types of images are provided, macroscopic and microscopic widefiled Images. Macroscopic images all show Petri dishes covered in fluorescent bacteria being consumed by amoebae. Images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum. Images used for the creation of a profile were all taken within 30 minutes of each other. Within each directory numbered images are independent replicates. The raw video directory contains time series for dishes under drug treatments. Each numbered folder is a sequence of photos (taken 30 minutes apart of each other) of a single dish. Microscopic images all show amoebae consuming bacteria on a petri dish. The 45 minute videos show either edge cells (located at the edge of amoebae colonies), or inner cells (located 2.5 millimeters towards the center of the colony, from the edge). Videos are confocal stacks, with bacteria showing in green and amoebae appearing as black holes within the bacterial lawn. As was for the macroscopic images, images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum.
Petsev, Nikolai D.; Nikoubashman, Arash; Latinwo, Folarin
Abstract:
Source code for our genetic algorithm optimization investigation of conglomerate and racemic chiral crystals. In this work, we address challenges in determining the stable structures formed by chiral molecules by applying the framework of genetic algorithms to predict the ground state crystal lattices formed by a chiral tetramer model. Using this code, we explore the relative stability and structures of the model’s conglomerate and racemic crystals, and extract a structural phase diagram for the stable Bravais crystal types in the zero-temperature limit.
In our study, we compare the three dimensional (3D) morphologic characteristics of Earth's first reef-building animals (archaeocyath sponges) with those of modern, photosynthetic corals. Within this repository are the 3D image data products for both groups of animals. The archaeocyath images were produced through serial grinding and imaging with the Grinding, Imaging, and Reconstruction Instrument at Princeton University. The images in this repository are the downsampled data products used in our study, and the full resolution (>2TB) image stacks are available upon request from the author. For the coral image data, the computed tomography (CT) images of all samples are included at full resolution. Also included in this repository are the manual and automated outline coordinates of the archaeocyath and coral branches, which can be directly used for morphological study.
This dataset contains all data relevant to a forthcoming publication in which we used molecular simulation methods to study the phase behavior of supercooled water. The dataset contains simulation input and output files, processed data files, and image files used to create all plots in the manuscript. Python analysis scripts are also included, including instructions for how to re-generate all plots in the manuscript.
Kiefer, Janik; Brunner, Claudia E.; Hansen, Martin O. L.; Hultmark, Marcus
Abstract:
This data set contains data of a NACA 0021 airfoil as it undergoes upward ramp-type pitching motions at high Reynolds numbers and low Mach numbers. The parametric study covers a wide range of chord Reynolds numbers, reduced frequencies and pitching geometries characterized by varying mean angle and angle amplitude. The data were acquired in the High Reynolds number Test Facility at Princeton University, which is a closed-loop wind tunnel that can be pressurized up to 23 MPa and allowed for variation of the chord Reynolds number over a range of 5.0 × 10^5 ≤ Re_c ≤ 5.5 × 10^6. Data were acquired using 32 pressure taps along the surface of the airfoil. The data are the phase-averaged results of 150 individual half-cycles for any given test case.
These GROMACS trajectories show the existence of a critical point in deeply supercooled WAIL water. Also included is the code necessary to reproduce the figures in the corresponding paper from these trajectories. From this data the critical temperature, pressure, and density of the model can be found, and critical fluctuations in the deeply supercooled liquid can be directly observed (in a computer-simulation sense).
The dataset contains the model file for the Global Adjoint Tomography Model 25 (GLAD-M25). The model file contains parameters defined on the spectral-element mesh and is recommend to be used in SPECFEM3D GLOBE for seismic wave simulation at the global scale.
This dataset contains input and output files to reproduce the results of the manuscript "Homogeneous ice nucleation in an ab initio machine learning model" by Pablo M. Piaggi, Jack Weis, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, and Roberto Car (arXiv preprint https://arxiv.org/abs/2203.01376). In this work, we studied the homogeneous nucleation of ice from supercooled liquid water using a machine learning model trained on ab initio energies and forces. Since nucleation takes place over times much longer than the simulation times that can be afforded using molecular dynamics simulations, we make use of the seeding technique that is based on simulating an ice cluster embedded in liquid water. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or shrinking at the given supersaturation). Using data from the seeding simulations and the equations of classical nucleation theory we compute nucleation rates that can be compared with experiments.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.